Anticancer activity of caffeic acid n-butyl ester against A431 skin carcinoma cell line occurs via induction of apoptosis and inhibition of the mTOR/PI3K/AKT signaling pathway
نویسندگان
چکیده
Skin cancer is one of the primary causes of mortality worldwide. With an increasing frequency of skin cancers, there is an urgent requirement for the development of numerous treatment options. The present study investigated the anticancer activity of caffeic acid n‑butyl ester (CAE) against the A431 skin cancer cell line. Antiproliferative effects were investigated using an MMT assay. Apoptosis was examined by DAPI and Annexin V/fluorescein isothiocyanate and propidium iodide staining. Reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and cell cycle analyses were performed via flow cytometry. Protein expression was determined by western blotting. The findings of the present study demonstrated that among a variety of cancer cell lines, CAE exhibited significant anticancer activity against the A431 skin cancer cell line with a half‑maximal inhibitory concentration of 20 µM. CAE was associated with apoptosis and cell cycle arrest of A431 cells, and induced ROS‑mediated alterations in MMP. In addition, CAE considerably suppressed the expression of some of the important proteins of the phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) cascade. The results of the present study indicated that CAE exerted anticancer effects on the A431 skin carcinoma cell line via the induction of apoptosis and suppression of the PI3K/AKT/mTOR signaling pathway. Therefore, CAE may be beneficial for the development of chemotherapy for skin cancers.
منابع مشابه
PI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy
Objective(s):Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted t...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملQuercetin Synergistically Enhances the Anticancer Efficacy of Docetaxel through Induction of Apoptosis and Modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 Signaling Pathways in MDA-MB-231 Breast Cancer Cell Line
Docetaxel is widely used in the treatment of metastatic breast cancer. However, its effectiveness is limited due to chemoresistance and its undesirable side effects. The combination of chemotherapeutic agents and natural compounds is an effective strategy to overcome drug resistance and the ensuing inevitable toxicities. Quercetin is a natural flavonoid with strong antioxidant and anticancer ac...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملPI3K/Akt/mTOR and CDK4 combined inhibition enhanced apoptosis of thyroid cancer cell lines
Introduction Thyroid cancer is a malignant disease with poor prognosis. The PI3K/Akt/mTOR and Cyclin-Dependent Kinase 4 (CDK4) pathways are vital regulators of tumor cell proliferation and survival. Therefore the present study was designed to use dual inhibition of such pathways to kill thyroid cancer cells. Methods and materials The effects of each inhibitors on human ATC and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2018